#include #include #include #include #include "st7735.h" /********************************** EASY PORT *********************************/ /* * If you porting this code, you can change below headers and function pointers * in gpio structure. */ #include #include struct { void (* const delay)(unsigned int milliseconds); void (* const pinMode)(int pin, int mode); void (* const digitalWrite)(int pin, int value); int (* const spiSetup)(int channel, int speed); int (* const spiDataRW)(int channel, uint8 *data, int length); } static const gpio = { delay, pinMode, digitalWrite, wiringPiSPISetup, wiringPiSPIDataRW }; /****************************** END EASY PORT END *****************************/ static uint8 screen_buffer[SCREEN_HEIGHT * SCREEN_WIDTH * 3]; // TODO: make dynamic static uint16 screen_window_x1; static uint16 screen_window_x2; static uint16 screen_window_y1; static uint16 screen_window_y2; static uint16 screen_cursor_x; static uint16 screen_cursor_y; void advance_screen_cursor() { screen_cursor_x++; if (screen_cursor_x > screen_window_x2) { screen_cursor_x = screen_window_x1; screen_cursor_y++; if (screen_cursor_y > screen_window_y2) { screen_cursor_y = screen_window_y1; } } } static lcd_t *activeDisplay; /* * Safe allocation of the memory block. * * Parameters: * size - Size of memory block to allocate. * * Return: * Pointer to the memory block. If an error occurs, stop the program. */ static inline void *safeMalloc(size_t size) { void *memoryBlock = (void*) malloc(size); /* Check the pointer */ if(memoryBlock == NULL) { fprintf(stderr, "Out of RAM memory!\n"); exit(EXIT_FAILURE); } return memoryBlock; } /* safeMalloc */ uint16 lcdhw_setWindow(lcd_t* lcd, uint16 x1, uint16 y1, uint16 x2, uint16 y2); void lcdhw_pushPixel(lcd_t* lcd, uint8 r, uint8 g, uint8 b); void lcdhw_pushPixels(lcd_t* lcd, uint8* pixels, size_t count); void lcd_setOrientation(lcd_t* lcd, uint16 orientation); void lcd_setGamma(lcd_t* lcd, uint16 state); void lcd_pushPixel(lcd_t* lcd, uint8 r, uint8 g, uint8 b); void lcd_pushPixels(lcd_t* lcd, uint8* pixels, size_t count); /* * Write the command to the display driver. * * Parameters: * cmd - The command to write. */ static inline void writeCommand(uint8 cmd) { gpio.digitalWrite(activeDisplay->a0, LOW); gpio.spiDataRW(activeDisplay->channel, &cmd, 1); } /* writeCommand */ /* * Write the data to the display driver. * * Parameters: * data - The data to write. */ static inline void writeData(uint8 data) { gpio.digitalWrite(activeDisplay->a0, HIGH); gpio.spiDataRW(activeDisplay->channel, &data, 1); } /* writeData */ lcd_t *lcd_init(int spiSpeed, int channel, int cs, int a0, int rs) { /* Create the one instance of the lcdst_t structure and activate it */ lcd_t *instance = (lcd_t *) safeMalloc(sizeof(lcd_t)); activeDisplay = instance; instance->channel = channel; instance->cs = cs; instance->a0 = a0; instance->rs = rs; /* * instance->width; instance->height * The setting of this variables will take place * in the function lcdst_setOrientation() below. */ /* Configure the a0 pin. The logic level is not significant now. */ gpio.pinMode(instance->a0, OUTPUT); /* If the rs pin is connected then configure it */ if(instance->rs != -1) { gpio.pinMode(instance->rs, OUTPUT); gpio.digitalWrite(instance->rs, LOW); gpio.delay(10); gpio.digitalWrite(instance->rs, HIGH); gpio.delay(10); } /* Configure the SPI interface */ if(gpio.spiSetup(instance->channel, spiSpeed) == -1) { fprintf(stderr, "Failed to setup the SPI interface!\n"); exit(EXIT_FAILURE); } /* Software reset; Wait minimum 120ms */ writeCommand(0x01); gpio.delay(150); /* Sleep out; Wait minimum 120ms */ writeCommand(0x11); gpio.delay(150); /* Set the orientation and the gamma */ lcd_setOrientation(instance, 0); lcd_setGamma(instance, 2); /* Optional */ /* Set the pixel format */ writeCommand(0x3A); writeData(0x06); /* Display ON; Wait 100ms before start */ writeCommand(0x29); gpio.delay(100); return instance; } /* lcd_init */ void lcd_deinit(lcd_t *display) { if(display == NULL) return; free(display); } /* lcdst_uninit */ void lcd_setOrientation(lcd_t* lcd, uint16 orientation) { writeCommand(0x36); /* Memory Data Access Control */ int sw = SCREEN_WIDTH; int sh = SCREEN_HEIGHT; uint8 my = 1 << 7; // row address order bit uint8 mx = 1 << 6; // column address order bit uint8 mv = 1 << 5; // row/column exchange bit switch(orientation) { case 1: writeData(mx & mv); activeDisplay->width = sw; activeDisplay->height = sh; break; case 2: writeData(my & mx); activeDisplay->width = sh; activeDisplay->height = sw; break; case 3: writeData(my & mv); activeDisplay->width = sw; activeDisplay->height = sh; break; case 4: writeData(mx); activeDisplay->width = sh; activeDisplay->height = sw; break; default: writeData(0); /* None */ activeDisplay->width = sh; activeDisplay->height = sw; break; } lcdhw_setWindow(lcd, 0, 0, activeDisplay->width - 1, activeDisplay->height - 1); } /* lcdst_setOrientation */ void lcd_setGamma(lcd_t* lcd, uint16 state) { /* The status (0 or 1) of the GS pin can only be empirically tested */ switch(state) { case 1: state = 2; break; /* GS_pin=1: 1.8; GS_pin=0: 2.5 */ case 2: state = 4; break; /* GS_pin=1: 2.5; GS_pin=0: 2.2 */ case 3: state = 8; break; /* GS_pin=1: 1.0; GS_pin=0: 1.8 */ default: state = 1; break; /* GS_pin=1: 2.2; GS_pin=0: 1.0 */ } /* Set built-in gamma */ writeCommand(0x26); writeData(state); } /* lcdst_setGamma */ void lcd_setInversion(lcd_t* lcd, uint16 state) { /* Display inversion ON/OFF */ writeCommand(state ? 0x21 : 0x20); } /* lcdst_setInversion */ uint16 lcdhw_setWindow(lcd_t* lcd, uint16 x1, uint16 y1, uint16 x2, uint16 y2) { /* Accept: 0 <= x1 <= x2 < activeDisplay->width */ if(x2 < x1) return 1; if(x2 >= activeDisplay->width) return 1; /* Accept: 0 <= y1 <= y2 < activeDisplay->height */ if(y2 < y1) return 1; if(y2 >= activeDisplay->height) return 1; /* Set column address */ writeCommand(0x2A); writeData(x1 >> 8); writeData(x1 & 0xFF); writeData(x2 >> 8); writeData(x2 & 0XFF); /* Set row address */ writeCommand(0x2B); writeData(y1 >> 8); writeData(y1 & 0xFF); writeData(y2 >> 8); writeData(y2 & 0xFF); /* Activate RAW write */ writeCommand(0x2C); //gpio.delay(5); return 0; } /* lcdst_setWindow */ void lcd_activateRamWrite(void) { writeCommand(0x2C); //gpio.delay(5); } /* lcdst_activateRamWrite */ uint8 pixel[3]; inline void lcdhw_pushPixel(lcd_t* lcd, uint8 r, uint8 g, uint8 b) { gpio.digitalWrite(activeDisplay->a0, HIGH); pixel[0] = r; pixel[1] = g; pixel[2] = b; gpio.spiDataRW(activeDisplay->channel, pixel, 3); } void lcdhw_pushPixels(lcd_t* lcd, uint8* pixels, size_t count) { gpio.digitalWrite(activeDisplay->a0, HIGH); gpio.spiDataRW(activeDisplay->channel, pixels, count * 3); } uint8 line_buffer[SCREEN_WIDTH*3]; // lcd->width or lcd->height void lcd_redrawBuffer(lcd_t* lcd) { for (int i = 0; i < lcd->height; i++) { memcpy(line_buffer, &screen_buffer[i*lcd->width*3], lcd->width*3); lcdhw_setWindow(lcd, 0, i, lcd->width - 1, i); lcdhw_pushPixels(lcd, line_buffer, lcd->width); } } uint16 lcd_setWindow(lcd_t* lcd, uint16 x1, uint16 y1, uint16 x2, uint16 y2) { screen_window_x1 = x1; screen_window_x2 = x2; screen_window_y1 = y1; screen_window_y2 = y2; screen_cursor_x = x1; screen_cursor_y = y1; return 0; } void lcd_pushPixel(lcd_t* lcd, uint8 r, uint8 g, uint8 b) { int i = screen_cursor_x + screen_cursor_y * lcd->width; screen_buffer[i * 3 + 0] = r; screen_buffer[i * 3 + 1] = g; screen_buffer[i * 3 + 2] = b; advance_screen_cursor(); } void lcd_pushPixelSkip(lcd_t* lcd) { advance_screen_cursor(); } void lcd_pushPixels(lcd_t* lcd, uint8* pixels, size_t count) { for (int i = 0; i < count; i++) { lcd_pushPixel(lcd, pixels[i * 3 + 0], pixels[i * 3 + 1], pixels[i * 3 + 2]); } }