linux-st7735/st7735.c
2020-08-01 19:49:42 +00:00

333 lines
7.5 KiB
C

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include "st7735.h"
#include "font8x8_basic.h"
/********************************** EASY PORT *********************************/
/*
* If you porting this code, you can change below headers and function pointers
* in gpio structure.
*/
#include <wiringPi.h>
#include <wiringPiSPI.h>
struct
{
void (* const delay)(unsigned int milliseconds);
void (* const pinMode)(int pin, int mode);
void (* const digitalWrite)(int pin, int value);
int (* const spiSetup)(int channel, int speed);
int (* const spiDataRW)(int channel, uint8 *data, int length);
} static const gpio =
{
delay,
pinMode,
digitalWrite,
wiringPiSPISetup,
wiringPiSPIDataRW
};
/****************************** END EASY PORT END *****************************/
/* The global variable that stores the pointer to the structure,
* with the current active display.
*/
static lcd_t *activeDisplay;
/*
* Safe allocation of the memory block.
*
* Parameters:
* size - Size of memory block to allocate.
*
* Return:
* Pointer to the memory block. If an error occurs, stop the program.
*/
static inline void *safeMalloc(size_t size)
{
void *memoryBlock = (void*) malloc(size);
/* Check the pointer */
if(memoryBlock == NULL)
{
fprintf(stderr, "Out of RAM memory!\n");
exit(EXIT_FAILURE);
}
return memoryBlock;
} /* safeMalloc */
void lcd_setOrientation(uint8 orientation);
void lcd_setGamma(uint8 state);
void lcd_pushPx(uint8 r, uint8 g, uint8 b);
void lcd_pushPixels(uint8* pixels, size_t count);
void lcd_pushChar(char c);
/*
* Write the command to the display driver.
*
* Parameters:
* cmd - The command to write.
*/
static inline void writeCommand(uint8 cmd)
{
gpio.digitalWrite(activeDisplay->a0, LOW);
gpio.spiDataRW(activeDisplay->cs, &cmd, 1);
} /* writeCommand */
/*
* Write the data to the display driver.
*
* Parameters:
* data - The data to write.
*/
static inline void writeData(uint8 data)
{
gpio.digitalWrite(activeDisplay->a0, HIGH);
gpio.spiDataRW(activeDisplay->cs, &data, 1);
} /* writeData */
lcd_t *lcd_init(int spiSpeed, int cs, int a0, int rs)
{
/* Create the one instance of the lcdst_t structure and activate it */
lcd_t *instance = (lcd_t *) safeMalloc(sizeof(lcd_t));
activeDisplay = instance;
/* Assign specific pins */
instance->cs = cs;
instance->a0 = a0;
instance->rs = rs;
/*
* instance->width; instance->height
* The setting of this variables will take place
* in the function lcdst_setOrientation() below.
*/
/* Configure the a0 pin. The logic level is not significant now. */
gpio.pinMode(instance->a0, OUTPUT);
/* If the rs pin is connected then configure it */
if(instance->rs != -1)
{
gpio.pinMode(instance->rs, OUTPUT);
gpio.digitalWrite(instance->rs, HIGH); /* Reset OFF */
gpio.delay(10);
}
/* Configure the SPI interface */
if(gpio.spiSetup(instance->cs, spiSpeed) == -1)
{
fprintf(stderr, "Failed to setup the SPI interface!\n");
exit(EXIT_FAILURE);
}
/* Software reset; Wait minimum 120ms */
writeCommand(0x01);
gpio.delay(150);
/* Sleep out; Wait minimum 120ms */
writeCommand(0x11);
gpio.delay(150);
/* Set the orientation and the gamma */
lcd_setOrientation(0);
lcd_setGamma(2); /* Optional */
/* Set the pixel format */
writeCommand(0x3A);
writeData(0x06);
/* Display ON; Wait 100ms before start */
writeCommand(0x29);
gpio.delay(100);
return instance;
} /* lcd_init */
void lcd_deinit(lcd_t *display)
{
if(display == NULL) return;
free(display);
} /* lcdst_uninit */
void lcd_setOrientation(uint8 orientation)
{
writeCommand(0x36); /* Memory Data Access Control */
switch(orientation)
{
case 1:
writeData(0x60); /* MX + MV */
activeDisplay->width = 160;
activeDisplay->height = 128;
lcd_setWindow(0, 0, 159, 127);
break;
case 2:
writeData(0xC0); /* MY + MX */
activeDisplay->width = 128;
activeDisplay->height = 160;
lcd_setWindow(0, 0, 127, 159);
break;
case 3:
writeData(0xA0); /* MY + MV */
activeDisplay->width = 160;
activeDisplay->height = 128;
lcd_setWindow(0, 0, 159, 127);
break;
default:
writeData(0x00); /* None */
activeDisplay->width = 128;
activeDisplay->height = 160;
lcd_setWindow(0, 0, 127, 159);
break;
}
} /* lcdst_setOrientation */
void lcd_setGamma(uint8 state)
{
/* The status (0 or 1) of the GS pin can only be empirically tested */
switch(state)
{
case 1: state = 2; break; /* GS_pin=1: 1.8; GS_pin=0: 2.5 */
case 2: state = 4; break; /* GS_pin=1: 2.5; GS_pin=0: 2.2 */
case 3: state = 8; break; /* GS_pin=1: 1.0; GS_pin=0: 1.8 */
default: state = 1; break; /* GS_pin=1: 2.2; GS_pin=0: 1.0 */
}
/* Set built-in gamma */
writeCommand(0x26);
writeData(state);
} /* lcdst_setGamma */
void lcd_setInversion(uint8 state)
{
/* Display inversion ON/OFF */
writeCommand(state ? 0x21 : 0x20);
} /* lcdst_setInversion */
uint8 lcd_setWindow(uint8 x1, uint8 y1, uint8 x2, uint8 y2)
{
/* Accept: 0 <= x1 <= x2 < activeDisplay->width */
if(x2 < x1) return 1;
if(x2 >= activeDisplay->width) return 1;
/* Accept: 0 <= y1 <= y2 < activeDisplay->height */
if(y2 < y1) return 1;
if(y2 >= activeDisplay->height) return 1;
/* Set column address */
writeCommand(0x2A);
writeData(0); writeData(x1);
writeData(0); writeData(x2);
/* Set row address */
writeCommand(0x2B);
writeData(0); writeData(y1);
writeData(0); writeData(y2);
/* Activate RAW write */
writeCommand(0x2C);
//gpio.delay(5);
return 0;
} /* lcdst_setWindow */
void lcd_activateRamWrite(void)
{
writeCommand(0x2C);
//gpio.delay(5);
} /* lcdst_activateRamWrite */
uint8 pixel[3];
inline void lcd_pushPx(uint8 r, uint8 g, uint8 b)
{
gpio.digitalWrite(activeDisplay->a0, HIGH);
pixel[0] = r;
pixel[1] = g;
pixel[2] = b;
gpio.spiDataRW(activeDisplay->cs, pixel, 3);
} /* lcdst_pushPx */
void lcd_pushPixels(uint8* pixels, size_t count)
{
gpio.digitalWrite(activeDisplay->a0, HIGH);
gpio.spiDataRW(activeDisplay->cs, pixels, count * 3);
}
void lcd_drawPx(uint8 x, uint8 y, uint8 r, uint8 g, uint8 b)
{
if(lcd_setWindow(x, y, x, y)) return;
lcd_pushPx(r, g, b);
} /* lcdst_drawPx */
void lcd_fillRect(uint8 x, uint8 y, uint8 w, uint8 h,
uint8 r, uint8 g, uint8 b)
{
/* Draw only in the display space */
if((w == 0) || (h == 0)) return;
if((x+w-1) >= activeDisplay->width) w = activeDisplay->width - x;
if((y+h-1) >= activeDisplay->height) h = activeDisplay->height - y;
/* Draw the filled rectangle */
if(lcd_setWindow(x, y, x+w-1, y+h-1)) return;
#define BUFFER_PIXELS 64
int wh = w*h;
uint8 buffer[BUFFER_PIXELS * sizeof(uint8) * 3];
for (int p = 0; p < wh; p += BUFFER_PIXELS) {
for(int pb = 0; pb < BUFFER_PIXELS; pb++) {
buffer[pb * 3 + 0] = r;
buffer[pb * 3 + 1] = g;
buffer[pb * 3 + 2] = b;
}
int rem = wh - p;
lcd_pushPixels(buffer, ((rem < BUFFER_PIXELS) ? rem : BUFFER_PIXELS));
}
}
void lcd_fillScreen(uint8 r, uint8 g, uint8 b)
{
/* Fill the whole screen with one color */
lcd_fillRect(0, 0, activeDisplay->width, activeDisplay->height, r, g, b);
} /* lcdst_drawScreen */
void lcd_pushChar(char c)
{
char* bitmap = font8x8_basic[(unsigned int) c];
int x,y;
int set;
int mask;
for (x=0; x < 8; x++) {
for (y=0; y < 8; y++) {
set = bitmap[x] & 1 << y;
printf("%c", set ? 'X' : ' ');
if (set) {
lcd_pushPx(200, 0, 0);
} else {
lcd_pushPx(0, 0, 0);
}
}
printf("\n");
}
}
void lcd_printChar(uint8 x, uint8 y, char c)
{
lcd_setWindow(x, y, x+8 - 1, y+8 - 1);
lcd_pushChar(c);
}
void lcd_printText(uint8 x, uint8 y, char* text)
{
for (int i = 0; i < strlen(text); i++) {
lcd_printChar(x + i * 8, y, text[i]);
}
}